Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 2 de 2
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
medrxiv; 2022.
Препринт в английский | medRxiv | ID: ppzbmed-10.1101.2022.11.28.22282811

Реферат

SARS-CoV-2 infection can manifest as a wide range of respiratory and systemic symptoms well after the acute phase of infection in over 50% of patients. Key questions remain on the long-term effects of infection on tissue pathology in recovered COVID-19 patients. To address these questions we performed multiplexed imaging of post-mortem lung tissue from 12 individuals who died post-acute COVID-19 (PC) and compare them to lung tissue from patients who died during the acute phase of COVID-19, or patients who died with idiopathic pulmonary fibrosis (IPF), and otherwise healthy lung tissue. We find evidence of viral presence in the lung up to 359 days after the acute phase of disease, including in patients with negative nasopharyngeal swab tests. The lung of PC patients are characterized by the accumulation of senescent alveolar type 2 cells, fibrosis with hypervascularization of peribronchial areas and alveolar septa, as the most pronounced pathophysiological features. At the cellular level, lung disease of PC patients, while distinct, shares pathological features with the chronic pulmonary disease of IPF. which may help rationalize interventions for PC patients. Altogether, this study provides an important foundation for the understanding of the long-term effects of SARS-CoV-2 pulmonary infection at the microanatomical, cellular, and molecular level.


Тема - темы
Fibrosis , Adenocarcinoma, Bronchiolo-Alveolar , Lung Diseases , Pulmonary Disease, Chronic Obstructive , Severe Acute Respiratory Syndrome , Idiopathic Pulmonary Fibrosis , COVID-19
2.
medrxiv; 2020.
Препринт в английский | medRxiv | ID: ppzbmed-10.1101.2020.10.26.20219584

Реферат

Recent studies have provided insights into the pathology and immune response to coronavirus disease 2019 (COVID-19). However thorough interrogation of the interplay between infected cells and the immune system at sites of infection is lacking. We use high parameter imaging mass cytometry targeting the expression of 36 proteins, to investigate at single cell resolution, the cellular composition and spatial architecture of human acute lung injury including SARS-CoV-2. This spatially resolved, single-cell data unravels the disordered structure of the infected and injured lung alongside the distribution of extensive immune infiltration. Neutrophil and macrophage infiltration are hallmarks of bacterial pneumonia and COVID-19, respectively. We provide evidence that SARS-CoV-2 infects predominantly alveolar epithelial cells and induces a localized hyper-inflammatory cell state associated with lung damage. By leveraging the temporal range of COVID-19 severe fatal disease in relation to the time of symptom onset, we observe increased macrophage extravasation, mesenchymal cells, and fibroblasts abundance concomitant with increased proximity between these cell types as the disease progresses, possibly as an attempt to repair the damaged lung tissue. This spatially resolved single-cell data allowed us to develop a biologically interpretable landscape of lung pathology from a structural, immunological and clinical standpoint. This spatial single-cell landscape enabled the pathophysiological characterization of the human lung from its macroscopic presentation to the single-cell, providing an important basis for the understanding of COVID-19, and lung pathology in general.


Тема - темы
Adenocarcinoma, Bronchiolo-Alveolar , Lung Diseases , Severe Acute Respiratory Syndrome , Acute Lung Injury , COVID-19 , Pneumonia, Bacterial
Критерии поиска